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An approximate method /1l/ is used for converting three-dimensional boundary condi-
tiong to two-dimensional hmmri:-ny conditions for pierzoceramic shellsg vt mand a3
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in advance along one of sets of coordlnate lines of the median surface for various
methods of £fixing edges covered with electrodes and free of these. More precise equations
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Ol piezZoceramic shells with the PUJ.G(J.AdE-LUH considered here are obtained Dy the
same method in /2/.

1. We assume that, as in the case of non-electric shells /1/, the complete electro-
elastic state can be repregsented as the sum of two electroelastic states, one of which varies
comparatively slowly along the median surface coordinate lines and is defined by equations of
the theory of piezoceramic shells /2/ (internal electroelastic state), and the other electro-
elastic state, that of the boundary layer, is rapidly attenuated in the perpendicular direc-
tion to the edge, and is defined by three-~ 1mensxonal equations
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imposed boundary conditions.

All the notation used here is the same as in /2/.

We ZEIEI cne sne;; to a crlorthéqc’ma; system of COOZ'anaCES al, a,, ‘Y where &y a,— are
lines that coincide with the lines of curvature of the median surface, and the 7Y-lines are
orthogonal to them.

Since with preliminary polarization along the a,-lines the directions of a, and a, are
not the same, we consider separately the edges «, = a,, and d, = 2%,

We introduce into equations of the boundary layer instead of the symmetric oy (U, p
1, 2, 3) the asymmetric tensor of stresses, and instead of the electrical induction vector D* and
of the electric field strength vector E* introduce vectors D and E by formulas
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Su=(1+%j)ai.-, i,-:(1+1;—"i>oi, (1.1)
Sum Sum (15 o Sam (1 L)1+ o

Dim(t4of) oy Bim(it (4 )

Ev=(1+—;§—i)li',-* (=j=1,2)

Let the shell edge coincide with the line o; = &jo-
We carry out in the three-dimensional equations of piezoelasticity the following substit-
ution of variables:

oy — o= RN, a; = B0, y=Rnli(i+*j=12) (1.2)

where t is the index of variablity of inner electroelastic state, and n is the ratio of the
shell half-thickness h to the characteristic dimension R. This substitution means that we
are seeking the three-dimensional electroelastic state with variability index equal unity in
the direction normal to the edge and along the normal to the median surface of the shell, and
which has a much smaller variability index along the edge.

th the theory of boundary laver of nonelectric shells we represent the bound-

ny culaa.ugy with the CEoXy OX JounGary aye Lric

ary layer as a sum of plane and antiplane boundary layers (it will be see from the equations
below that here the terms "plane" and "antiplane" are purely formal, and can be explainedonly
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2. on the edge a, = a&;, for the quantities of the antiplane and the plane boundary
layers we have the following asymptotics:

(S10%, Sui®, Sua®, va'h, ViR, BiF, E¥, Dy, DY) = (2.1)
M (Sn#, St Staks Vi, LR EYe, Ese, Dix, Dl

Ez = nl“i'ﬂ'Ez*

(Suk, Spe*, Sas”, Ulk[h U'sk/h Dzk) == (2.2)

’!H" (Sll*s *522*7 Sss*s Swh Vi*a Vg*, D:*)

The validity of these asymptotics is supported by that in the initial approximations con-
sistent systems of equations of plane and antiplane boundary layer are cobtained.
Formulas (2.1) and (2.2) mean that instead of each unknown gquantity is introduced the
respective quantity with an asterisk multiplied by 7 in some power, for example
k rak
S’ = 1Sy
The powers of 1 are selected so that the quantities with asterisks are of the same order.
The superscript k¥ in (2.1) and (2.2) must be replaced below by either a or b for quantit-
ies of antiplane (let us set r==0) and plane (r= 1 — {) boundary layers, respectively.
Substituting the antiplane boundary layer asymptotics into the three-dimensional equations of
piezoelasticity and carrying out the substitutions of variables (1.2) (i =1, j=2), we obtain a
system of equations which can be split into two subsystems: the principal and the subsidiary . These
subsystems are tobe integrated successively: first, from the principal subsystem we determine
the gquantities {(2.1), and then from the equations of the subsidiary subsystem we deterxmine the
sought quantities (2.2), assuming the quantities (2.1) to be known. In exactly the same way
for the plane boundary layer we obtain the principal subsystem for gquantities (2.2) and the
subsidiary subsystem for the gquantities (2.1).
Let us write down the equations of the principal subsystems for the antiplane and plane
boundary layers in the initial approximation

ra
4 85%. | BS; 1 Ve o a
T =0 g el S = s S5 (2.3

ava

ke disFEge == s ESqw, D= enTE e + disSiw
ape 4 8D%
Dge =21 TEgs -+ dasSzoxs 6_? + —a-él:- =0

. 1 4y,° 1 "
s
Sux =0, L=t (2.4)
be? =0, L=t (2.5)
D=0, [=—--1 (2.6)
1 asu# asll,a* =0 4 aS:u# BS‘,’“
g a; Ay %% &
SlsESn* + 533E o + SlaESga* =0
__LGV?*___S E +5 ESP . 1 51 ESE
AIO aal i & 4 11% 18 2% 7 12 b=
Wik b b 5
3: = 8195 Spix + 51855294 -+ S11FSpex

=0 (2.7)

avf, i an‘
Y
Dhy=dp;Shin + d5sStae + dnSoss

Sis’ =0, Shy=0, I} =1 (2.8

Ajp=A,, Aypy=4, 5 =0

= 565 Sy

where Uy, Uy, Uy are three-dimensional displacements, ¥ is the electrical potential, and Su®
5125, 810%, 835F, 540F, 5647, day, dogs gy €11T» 85T are the elastic and electrical constants.

Assuming that mechanical and electrical surface loads are taken into account in the in~
tegration of equations of internal electroelastic state, we obtain for the boundary layer the
homogeneous conditions (2.4)— (2.6) and (2.8). Conditions (2.5) relate to face surfaces and
conditions (2.6) must be satisfied on the face surfaces free of electrodes.



222

3.' For.deriving the equations of boundary layer on the edge a, = @y, we substitute in
three~dimensional equations of piezoelasticity (1.2) (i=2, j=1), and assume for the unknown
quantities the following asymptotics:

(Sllkv Suk, Slakt vlk/h’ le) == Tlr (S'l‘ﬂ'v S:l*o Sf”.'V;‘., Df*)
(S1a*, Sar®, Sss*, Sast, va¥h, v5'/h, $'/h, Eo*, Es¥, Do¥, Dyy =

T(""’ (S;rl*t S:e*v ’Sk!s’h ‘Sgs*’ V-f*, V;M ’ng- E:‘s E:‘t D:h -D:*)’
Elk — n:—:t-r Ei‘*

—~
Lo (9%
. .
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For the antiplane and plane boundary layers we set the number r equal to ¢ and 1—1
respectively. The principal subsystems of the antiplane and plane boundary layer in the initial
approximation at the edge a4 == ayy are

5%, as? wve
%;—5&3—-4-—7?1=0, A—lﬁo--ﬁ?'=suxsfxs==&ugsgm (3,3)
s,
—3?" = Ses % S a4 Die = d1s S
Siu=0, =1 (3.4)
b
1 e im 1 e OSmm o (3.5)

W TTE 0 A TR
5115 80w -+ 5155 Shyr + 8125 Skn + duEon =0

I e g »
P B o 513 + S05E Seae + 5155 Seon + dss e
avg'l Esb Ecb Eob Wb
3t = $12E 8710 + 5135 S90x + 511 E S 4 g1 Fon

P14 avd
71:—52.’1 + aE* = soaZ St + dis g

Din =81, TE% + d1sSion

Diu = eqsTEea + dnSoix + dusStan + darSies
GD& 1 ang,

%t a0

. % R N b 1oyt

Bw=—, Be=—gois Bes—grwE

S:ub—“"O: Sasb"Gy {= =41 {3.6)
b’ =10, [ =1 (3.7)
Da’=0, { =1 (3.8)

A=A, Adp=4,; % =0

4. Consider a shell whose face surfaces are free of electrodes. The electroelasticity
relations were obtained in /2/ with an accuracy to guantities of order
e =0 (n**) (4.1)

Let us derive the boundary conditicns of the theory of piezoceramic shells with the same
accuracy.
Let the shell edge a, = a,;, covered with electrodes be rigidly fixed. On the edge sur-
face the electric potential is equal V which depends on time only. The three-dimensional

boundary conditions are as follows:
0120, Ug"_"og Ua’—"‘(}, \P=V (4,2}

(4.2) in the form of three terms, the first of which

We represent each of the quantities
and the

is determined by the two-dimensional eguations of the theory of piezoceramic shells,
second and third are determined by the equations of antiplane and plane boundary layers, re-
spectively. For quantities of internal electroelastic state we use the asymptotics and the
expansions of unknown quantities in coorxdinate ¥ given in /2/, for quantities of the boundary
layer we take into account asymptotic expansions {(3.1) and (3.2). As a result, conditions

(4.2) can be represented in the form
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1! (B0 + MLy 1) + MRV Sy 4 B RV e =0 (4.3

0 (Va0 + NBRL0g 1) - NIHERY Ge 4+ qHBRVE, =0
1° (Us,0 + M=Lus,1) + NFHERVE, 4 qERVE, =0
NP0 + B-H2RY,* + qERY, = 'V

The quantities of internal electroelastic state are determined by the inhomogeneous equa-
tions which take into account the mechanical and electrical surface loads. Quantities of the
antiplane and plane boundary layers are obtained from the homogeneous equations; in connec-
tion with this they have multipliers n® and nf. The numbers a and B are selected so as to
obtain for boundary layers from (4.3) inhomogeneous conditions for the end faces. The uniguely
acceptable values of a, f,

=1-t p=0 (4.4)

do not result in contradictions.
Taking into account (4.4) formulas {4.3) are written thus:

D10 4 WLy 4+ o (Ve RVI*) = (4.5)
Dago | MI2HLry ) 4 it (2 RV S + RV ,*) =0

Va0 - M=Lva,1 + W (U AVE + RVow) =

Yo 4 1 (P RY, + Ry, N

We consigder the last three conditions as the conditions for the end face of the plane
boundary layer. As in /1/, we xepresent the latter as the sum of symmetric and inversely
symmetric plane boundary layers.

For the inversely symmetric part of a plane boundary layer we obtain from (4.5) the fol~
lowing end face conditions at the edge §, =

RVis 4 W itog o =0, RV + Lvg, =0,
Ry’ + m¥dsa (Yo — V) =0

where instead of {,” there is introduced a new unknown functions Xy = = dysp,” which has the
same dimension as V' Vg2

Let us consider the subsidiary problems 1°- 4° with the following conditions at the end
face §, = 0:

RV," 410, RV,"=0, Ryb=0 (problem 19 (4.6)
RUp® =0, RV,,' =0, RL 4 1=0 { problem 29 4.7
RVl =0, RV, £=0. Rl =0 ( preblem 3 (4.8)
RVl =0, RVy'=0, R’ =0 ( preblem 4 (4-9)

The first tliree problems involve integration of equations (3.5) with allowance for con-
ditions at the face surfaces (3.6) and (3.7) and end face conditions {(4.6)— {4.8), and the
fourth, the integration inhomogeneous equations of the plane boundary layer, in whose right-
hand side appear the free terms of orderMwith allowance for conditions (3.6) and (3.7) and
homogeneous conditions at the end faces (4.9). In seeking the solutions of subgidiary prob-
lems 1°~ 49 we shall require that away from the edge the following conditions of decay

RVp' =0, RVy'=0, Ry =0, fh=—o
were satisfied.

The theory of the boundary layer is linear, hence the inversely symmetric part of the
plane boundary layer can be represented as a linear combination of four subsidiary problems
with multipliers

N 50, Ugp Mgy (B0 — V), 1

In the solution constructed in this way the translations and electric potential vanish
as § = ~o0 . We shall require that away from the edge the stresses and the electrical quant-
ities vanish. On physical considerations and from the St.Venant principle it follows that it
is necessary to stipulate that at the edge t, =0 the resultant of horizontal forces and the
components of the vector of electrical induction [, normal to the edge vanish
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F ™™g + Fn ™ dyg (9, — V) + Fyvgn+ Fqt =0
Bl’r”lvz,o + Bzﬂ’"‘ das (B0 — V) + By + Bt =0

where Fy, Fy, F3, F, and B,, B,, B;, B, denote the horizontal components of force and the normal
to the edge components of the vector of electrical induction at the edge ¢, =0 of problems
19—~ 409, Solving these equations for v,, and (i, — V), we obtain with the accuracy (4.1l) the
following formulas:

Vg, + T\I-‘mlva.l =0, day,0— V) -+ 0 my, =0

(4.10)
My = FoBg ~ F3By [ FyBy — F\Bg
VU TRB—F.8 T FB.—F.B

Considering in the same way the symmetric part of the plane boundary layer we obtain
V0 = 0, Ugo = 0, Uy = 0 (4.11)

The three-dimensional displacements are linked with those of the median surface of shells
Uy, Uy, W by formulas
Vo = Uy, Vg = Uy Vs = —W

Passing in formulas (4.10) and (4.11) to notation used in the theory of shells and ex-
panding vs;, to formula adduced in /2/, we obtain the following boundary conditions (x, = Qag):

[4
uy=0, u-+ hml-;i-; o (aus — @) =0
1 1 8
w_—_O, ‘?2=0, 'lp‘o)—V +hmgKTEE(aug—b1p(°))=0

a=519Ens + 513802, b=d51 — 51251 — s13%¢;

1~t

where the terms with coefficients m; and m, bring in corrections of order 0 into the bound-

ary conditions in comparison with unity.
The remaining boundary conditions are given without derivation.

The hinged edge (@, = ay) is covered by electrodes,
uy =0, w=0, G, =90
E o)
’1'2—{hkw—';-(-si—:l-T1— 2% oY )}_-:0

A; Oa,

E
S1g

(c=dn(-‘ltE—suE))

dy? — 515FemT

To determine the number n in it necessary to solve the homogeneous equations of the plane
problem (3.5), (3.6), (3.7) with end face conditions

1° She =0, RVA% =0, RBp+1=0
2. She=0, RVaA+L=0, Ru’ =0, (6= duba’)

and then to find the resultant of components normal to the edge surface of the electrical in-
duction A4, and 4, vector for problems 1° and 29, respectively and calculate n using formula
n = A,/A,.

The terms which bring in the boundary conditions corrections of order 0! are everywhere
enclosed in brackets.

Free edge a, =a, covered by electrodes,
b OH,,

Tz=0, Slg=0, Gg+3l—27 l,(ll =O (4.12)
S U
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For calculating | it is necessary to construct the sclution of equations of antiplane
problem (3.3), (3.4) with end face condition at the edge =0

?z + =0
For a free edge @3 = Oy, without electrodes the mechanical condition (4.12) are maint-
ained and the electrical condition must be replaced by the condition

D,® =0
Rigidly fixed edge a; = ay, covered by electrodes,

ul-}-m—g—‘g;;——ﬁ =0, w=0, =0, Y=

= "f (512Bn1y + S135n3)
where P,, P, are the horizontal components of forces acting on the edge ;= @;, obtained as
the result of integration of homogeneous equations of the plane problem {2.7) with conditions
on face surfaces (2.8) and with end face conditions (§, = O):
1°. RV% +1 =0, RV% =0
2. RV:, =0, RVL+L=0

Hinged edge a, =a,, covered by electrodes,

Tl-{hk,o {e®) p:r,} =0, G=0, uy=0

w=0, 'q;(o) =
+1
(P= §1 Ston o d€)

where p is determined from the solutions of Egs.{2.7) with conditions {2.8) and end face con-
ditions at §, =0

Ste=0, RVl + {=
Free edge a,=a,; covered by electrodes,

T1=0, 8u=0, Nx‘*-}-;-—aHn= (4.13)

@ +311—"—""?T“— . o=V

(ll— S tdt S 81° Alod&)

The number }; is obtained from the solutions of the antiplane problem (2.3), (2.4), (2.6)
with inhomogeneous end face conditions

Sl + L =0, Rp°=0

At the free edge q, = a,) devoid of electrodes the first three conditions of (4.13) are
maintained, and the remaining conditions are

8 (0}
Gy + 3, ;‘ Q‘ =0, -:i-a" =0 (4.14)
-+1 o
o= tdr § 8% 4w an
—-1 -—d

Por the determination of /; it is necessary to solve the antiplane prcblem (2.3), (2.4),
(2.6) with the following end face conditions with & =

S+ =0, Dy +d =0 {4.15)

5. Let the face surfaces of the shell be totally covered by electrodes and the edges be
free of them. The boundary conditions in that case are:
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Free edge o, =%, without electrodes,

T1=0, Su+ F=0, 61+ 3l o "z;x —0

Wi i {4 2}
Free edge o, =a,, without electrodes,

Tym0, Sut+ 52 =0, G+3- T —0

o {2880

The formula for calculating ! is given in Sect.4.

The number I3 is calculated by the last formula (4.14) in which I3 is substituted for [,
from the solution of Egs. (2.3) with conditions at the face surfaces (2.4), (2.5) with end faces
conditions (4.15).

To determine the constants [, L, &, I3 it is necessary by the method of dividing the vari-
ables to integrate the system of Egs.(2.3) and (3.3) with respective conditions on the face
surfaces and along the edge. As the rasult of simple calculations. We obtain

L=l =, = Iy = —0.42 (s&/s)

We have thus obtained the boundary conditions for piezoceramic shells pre-polarized along
one of the sets of the median plane coordinate lines. For shells with face surfaces entirely
covered with electrodes, they are the analog of boundary conditions, free nonelectric shells.
For shells having no electrodes on face surfaces, five boundary conditions are obtained on
each edge. The effect of boundary layer on inner electroelastic state does manifest itself in
the bonndary conditions by the appearance of a number of supplementary terms, the important of
which is the Kirchhoff correction for shear stresses. For the determination of other supple-
mentary terms it is necessary to calculate the constants m,, ..., Iy from the solutions of sup-
plementary problems. The terms with these constants bring in the boundary conditions correc-
tions of order yi, yl™ 3% in comparison with unity.
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