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ON BOUNDARY CONDITIONS IN THE THEORY OF PIEZOCERAWC SHELLS 
POLARIZED ALONG COORDINATE LINES* 

N.N. ROGACHEVA 

An approximate method /l/ is used for converting three-dimensional boundary condi- 
tions to two-dimensional boundary conditions for piezoceramic shells polarized 
in advance along one of sets of coordinate lines of the median surface for various 
methods of fixing edges coveredwithelectrodes andfreeofthese.Moreprecise equations 
of piezoceramic shells with the polarization considered here are obtained by the 
same method in /2/. 

1. We assume that, as in the case of non-electric shells /l/, the complete electro- 
elastic state can be represented as the sum of two electroelastic states, one of which varies 
comparatively slowly along the median surface coordinate lines and is defined by equations of 
the theory of piezoceramic shells /2/ (internal electroelastic state), and the other electro- 
elastic state, that of the boundary layer, is rapidly attenuated in the perpendicular direc- 
tion to the edge, and is defined by three-dimensional equations. 

At the shell rim the internal electroelastic state interacts with the boundarylayerunder 
imposed boundary conditions. 

All the notation used here is the same as in /2/. 
We refer the shell to a triorthogonal system of coordinates aI,a,, y where aI-, a%- are 

lines that coincide with the lines of curvature of the median surface, and the Y-lines are 
orthogonal to them. 

Since with preliminary polarization along the as-lines the directions of a, and aI are 
not the same, we consider separately the edges aI = a,, and a$ =szO. 

We introduce into equations of the boundary layer instead of the symmetric D!JP (CL* P = 
1, 2,3) the asymmetrictensorof stresses, and instead of the electrical induction vector D* and 
of the electric field strength vector E* introduce vectors D and E by formulas 

S<*=(1+*)“ii9 Sij=(l+ *) Uij 

S*s=&i=(l+ +-)% &,=(I$ $)(lf~)a,, 

Dc=(l+$-)Di*, +l++)(l++)W 

E~(i+-$-Ei* (i#j=1,2) 

(1.1) 

Let the shell edge coincide with the line %i = c,o. 
We carry out in the three-dimensional equations of piezoelasticity the following substit- 

ution of variables: 

at - a*,,= RqlEi* aj = Rq’E,, y = R$C (i + j = 1, 2) (1.2) 

where t is the index of variablity of inner electroelastic state, and 1) is the ratio of the 
shell half-thickness h to the characteristic dimension R. This substitution means that we 

are seeking the three-dimensional electroelastic state with variability index equal unity in 
the direction normal to the edge and along the normal to the median surface of the shell, and 
which has a much smaller variability index along the edge. 

By analogy with the theory of boundary layer of nonelectric shells we representthebound- 
ary layer as a sum of plane and antiplane boundary layers (it will be seen from the equations 

below that here the terms "plane" and "antiplane" are purely formal, and can be explainedonly 
in relation to mechanical quantities). 
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2. On the edge a, = a,, for the quantities of the antiplane and the 

layers we have the follOWi.ng aSys@otics: 

(&zk, Smk, Szzk, vsk/h, 9*/h, El’, Esk, Dlk, Dak) = 

qr (&, A’:,,, S&e, V:,, q*“. &, & D:,, D&) 

Ezk = ql-*+rE;* 

(&I~, SW,“, Sss”, sklk t vs”lh, Dzk) = 

q*-‘-‘(&+, sk,, Sk, S:,, Vi*, V;, D;s) 
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plane boundary 

(2.1) 

(2.2) 

The validity of these asymptotics is supported by that in the initial approximations con- 
sistent systems of equations of plane and antiplane boundary layer are obtained. 

Formulas (2.1) and (2.2) mean that instead of each unknown quantity is introduced the 
respective quantity with an asterisk multiplied by n in some power, fox example 

s k- 
12 --'t 

rsk 
12: 

The powers of n are selected so #at the quantities with asterisks are of the same order. 
The superscript k in (2.1) and (2.2) must be replaced below by either a or b for quantit- 

ies of antiplane (let us set r==O) andplane (r=l - t) boundary layers, respectively. 
s~stituting~e~tipl~ebo~da~ layerasymptoticsintothe three-dimensionalequations of 

piesoelasticityandcarryingoutthesubstitutions ofvariables (1.2) (i = 1, j = 2), weobtain a 
systemof equations which canbe splitintotwo subsystems: theprfncipalandthe subsidiary. These 
subsystems aretobeintegratedsuccessively: first, fromtheprincipal subsystem we determine 
the quantities (2.11, and then from the equations of the subsidiary subsystem we determinethe 
sought quantities (2.2), assuming the quantities (2.1) to be known. In exactly the same way 
for the plane boundary layer we obtain the principal subsystem for quantities (2.2) and the 
subsidiary subsystem for the quantities (2.1). 

Let us write down the equations of the principal subsystems for the antiplane and plane 
boundary layers in the initial approximation 

(2.3) 

(2.4) 

(2.5) 
(2.6) 

(2.7) 

where %% v2, pa are three-dimensional displacements,+ is the electrical potential, and GE, 
%zE~ QjE, s&,sHE,sb~s, d 81, d,,,d.,,,e,,T,sl)8rare the elastic and electrical constants. 

Assuming tnat mechanical and eLectrica surface loads are taken into account in the in- 
tegration of equations of internal electroelastic state, 
homogeneous conditions f2.4)- (2.6) and (2.8). 

we obtain for the boundary layer the 
Conditions (2.5) relate to face surfaces and 

conditions (2.6) must be satisfied on the face surfaces free of electrodes. 
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3. For deriving the equations of boundary layer on the edge a, = a,, we substitute in 
three-dimensional equations of piesoelasticity (1.2) (i 
quantities the following asymptotics: 

= 2, j- 1) , and assume for the unknown 

C3.1) 

(3.2) 

For the antiplane and plane boundary layers we set the number r equal to 0 and 1- t 
respectively. 
approximation 

(3.4) 

(3.5) 

(3.6) 

(3.71 

(3.8) 

4. Consider a shell whose face surfaces are free of electrodes. The electroelasticity 
relations were obtained in /2/ with an accuracy to quantities of order 

e = 0(3l2-+) (4.1) 

Let us derive the boundary conditions of the theory of piezoceramic shells with the same 
accuracy. 

Let the shell edge aa = cbpO covered with electrodes be rigidly fixed. On the edge sur- 

face the electric potential is equal V which depends on time only. The three-dimensional 

boundary conditions are as follows: 

VI = 0, v, = 0, ug = 0, $ = V (4.2) 

We represent each of the quantities (4.2) in the form of three terms, the first ofwhich 
is determined by the two-dimensional equations of the theory of piezoceramic shells, and the 

second and third are determined by the equations of antiplane and plane boundary Layers, re- 
spectively. For quantities of internal electroelastic state we use the asymptotics and the 
expansions of unknown quantities in coordinate y given in /2/, for quantities of the boundary 

layer we take into account asymptotic expansions (3.1) and (3.2). As a result, conditions 
(4.2) can be represented in the form 
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(4.3) 

The quantities of internal electroelastic state are determined by the inhomogeneous equa- 
tions which take into account the mechanical and electrical surface loads. Quantities of the 

antiplane and plane boundary layers are obtained from the homogeneous equations; in connec- 
tion with this they have multipliers qD and 718. The numbers cz and fl are selected so as to 
obtain for boundary layers from (4.3) inhomogeneous conditions for the end faces. The uniquely 
acceptable values of 01, fi, 

a=1-tl p-0 
(4.4) 

do not result in contradictions. 
Taking into account (4.4) formulas (4.3) are written thus: 

VI Cl -f- ?y-*'"@*,* + ?-y(/Iv;* + RI&)=0 

li*:0 -+ nl-*~+c@p,, + n'-'(q+"!RC';* + RTT;*)=O 

(4.5) 

We consider the last three conditions as the conditions for the end face of the plane 
boundary layer. As in /I/, we represent the latter as the sum of symmetric and inversely 
symmetric plane boundary layers. 

For the inversely symmetric part of a plane boundary layer we obtain from (4.5) the fol- 
lowing end face conditions at the edge fz -= 0: 

RI& _1- q-f+b*,@=o, Rf% + @%,I = 0, 

Rxeb f q-lif d&,0 - I.)== 0 

where instead of $*" there is introduced a new unknown functions Xeb = cJ,,$,~ which has the 
same dimension as T'?*L, 1; b 3* . 

Let us consider the subsidiary problems lo- 4' with the following conditions at the end 
face & = 0: 

RI‘,," -I- 1 ~- 0, R1',," = 0, Rx,& __ 0 (problem 1") (4.6) 
Rt*,*b = 0, HV ZbL == 0. RX," + 1 =I 0 

Rl',,b = 0. 
(problem 2") (4.7) 

RV,,& _I- 5 = 0. RY.,b = 0 (problem 3") 
Rl‘,,b = 0, RV,," = 0, Rxeh = 0 

(4.8) 
(problem 4') 

(4.9) 

The first three problems involve integration of equations (3.5) with allowance for con- 
ditions at the face surfaces (3.6) and (3.7) and end face conditions (4.6)- f4.8), and the 
fourth, the integration inhomogeneous equations of the plane boundary layer, in whose right- 
hand side appear the free terms of orderrlwith allowance for conditions (3.6) and (3.7) and 
homogeneous conditions at the end faces (4.9). In seeking the solutions of subsidiary prob- 
lems lo- 4O we shall require that away from the edge the following conditions of decay 

RJ7zeb = 0, RVSeb = 0, Rxeb = 0, Et = -cm 

were satisfied. 
The theory of the boundary layer is linear, hence the inversely symmetric part of the 

plane boundary layer can be represented as a linear combination of four subsidiary problems 
with multipliers 

rl 
-1+t e&Ol vs,1* 11 -l’fdss (W,o - VI, 1 

In the solution constructed in this way the translations and electric potential vanish 
as &=-a~. We shall require that away from the edge the stresses and the electricalquant- 
ities vanish. On physical considerations and from the St.Venant principle it follows that it 
is necessary to stipulate that at the edge E2=0 the resultant of horizontal forces and the 
components of the vector of electrical induction De normal to the edge vanish 
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where F,, F,, F,,F, and B,, B?,B,,B, denote the horizontal components of force and the normal 
to the edge components of the vector of electrical induction at the edge E, = 0 of problems 
lo- 40. Solving these equations for I&, and ($,,, -v), we obtain with the accuracy (4.1) the 
following formulas: 

Considering in the same way the symmetric part of the plane boundary layer we obtain 

V I.0 = 0, Vs.0 = 0, VT.1 = 0 (4.11) 

The three-dimensional displacements are linked with those of the median surfaceofshells 
nr, u5, w by formulas 

V 1.0 = %t Vs.0 = %r Vs.0 = --w 

Passing in formulas (4.10) and (4.11) to notation used in the theory of shells and ex- 
panding V~,~ to formula adduced in /2/, we obtain the following boundary conditions (a? = Go): 

where the terms with coefficients m, and m, bring in corrections of order n'-' intothebound- 
ary conditions in comparison with unity. 

The remaining boundary conditions are given without derivation. 

The hinged edge (a2 = a,,) is covered by electrodes,, 

UT = 0, w = 0, G, = 0 

c= d,(d-%lE) 
da2 - s,sE?‘eloT 

To determine the number n in it necessary to solve the homogeneous equations of theplane 
problem (3.5), (3.61, (3.7) with end face conditions 

1”. sL* = 0, RI& = 0, Rx*~ + 1 = 0 

2”. S:, 0, RVb, + 5 = 0, Rxeb = 0, (xeb = = d,,‘Lb) 

and then to find the resultant of cconponents normal to the edge surface of the electrical in- 
duction Al and A, vector for problems lo and 2O, respectively and calculate n using formula 
n = A,IA,. 

The terms which bring in the boundary conditions corrections of order n' are everywhere 
enclosed in brackets. 

Free edge a,=a,, covered by electrodes, 

(4.12) 



For calculating 1 it is necessary to construct the solution 
problem (3.31, (3.4) with end face condition at the edge & = 0 

For a free edge %= a,, without electrodes the mechanical condition f4.12) are maint- 
ained and the electrical condition must be replaced by the condition 

D,(o) = 0 

Rigidly fixed edge a,=cc,, covered by electrodes, 

ul+?++O, z&a 5=0, u>=o, yx=o, lp=v 

P, n=-( pl 81tEh i s18Enal) 

where P1,Pt are the horizontal components of forces acting on the edge a,=%~ obtained as 
the result of integration of homogeneous equations of the plane problem (2.7) with conditions 
on face surfaces (2.8) and with end face conditions (?& =O): 

1". Rti* + 1 = 0, RPw= 0 

2O. R&=0, m&-t_ $=O 
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of equations of antiplane 

Hinged edge al=alo covered by electrodes, 

Tl - hkso 

where P is determined from the solutions of 
ditions at El = 0 

Free edge 

The number I1 
with inhomogeneous 

a*=0 

Eqs.f2.7) with conditions (2.81 and end face con- 

S I”u. = 0, RVL + F; = 0 

al = alo covered by electrodes, 

T 1=01 
i 633~ I&1=0, M~---=o 
& a% 

f4.13) 

h arr, 
4++q~- -0, gfO)=Y 

(h = 1: 6 df s” &za-40 61) 
-DD 

is obtained from the solutions of the antipkne problem f2.3), (2.41, (2.6) 
end face conditions 

Sk+ E=O, R$*@=O 

At the free edge a, = aI0 devoid of electrodes the first three conditions of (4.13) are 
maintained, and the remaining conditions are 

h &Y, -- Gz + 3E2 A2 a&_ 

i a@) 
=o,-&-~=o (4.14) 

ia=PSdt 5 St Alo dt~ 
-1 - 

For the determination of 1* it is necessary to solve the antiplane problem (2.3), (2.41, 
(2.6) with the following end face conditrions with fl = 0: 

ST, + 5 = 0, D;* + t&5 = 0 (4.15) 

5. Let the face surfaces of the shell be totally covered by electrodes and the edges be 
free of them. The boundary conditions in that caee are: 
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Free edge a,=alo without electrodes, 

T1=0, &I+ %=O, G,+31++0 

N1_ 1 ah ---+[3z,p!gq=o -4 a& 

Free edge a2 -atO without electrodes, 

T,==0, SIS+% -0, GI+31+-$$=0 

&-Al * *+(31+9p}=o 

The formula for calculating 1 is given in Sect.4. 
The number 1, is calculated by the last formula (4.14) in which I, is substituted for 1% 

from the solution of Rqs.(2.3) with conditions at the face surfaces (2.4), (2.5) withendfaces 
conditions (4.15). 

To determine the constants l,l,, &, 1, it is necessary by the method of dividing the vari- 
ables to integrate the system of Eqs.(2.3) and (3.3) with respective conditions on the face 
surfaces and along the edge. As the result of simple calculations. We obtain 

1 = 1, = 1, = ls = -0.42 (&S~)~~~ 

We have thus obtained the boundary conditions for piezoceramic shells pre-polarizedalong 
one of the sets of the median plane coordinate lines. For shells with face surfaces entirely 
covered with electrodes, they are the analog of boundary conditions, free nonelectric shells. 
For shells having no electrodes on face surfaces, five boundary conditions are obtained on 
each edge. The effect of boundary layer on inner electroelastic state does manifest itself in 
the bonndary conditions by the appearance of a number of supplementary terms, the important of 
which is the Kirchhoff correction for shear stresses. For the determination of other supple- 
mentary terms it is necessary to calculate the constants ml, . . ., 1, from the solutions of sup- 
plementary problems. The terms with these constants bring in the boundary conditions correc- 
tions of order $,~r-L,na*~+c in comparison with unity. 
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